Quantcast
Latest StoriesScience
    In Brief: The Science of Designing Slot Machines

    Among all the artifice and constructs in a Las Vegas casino, none may be more engineered to entrance visitors and suck their wallets dry than the venerable slot machine. The evolution of the one-armed bandit is the topic of this Vox feature, which chronicles the many innovations and psychological tricks that slow machine designers employ to keep players in those ergonomic stools. These games are another example of activities that tap into psychological "flow"--even the architecture of the casino floor is designed to make the most persistent players feel like they're holed up in a private nook, free from the outside world. It's pretty scary stuff. MIT cultural anthropologist Natasha Dow Schull, who was interviewed for Vox's report, has written a book about the ongoing manipulation of human-[slot]-machine interaction, and was previously featured in this 2013 episode of 99 Percent Invisible.

    Norman
    The Secret to Smarter Robots: Ants

    Your cat is stuck in a burning building too dangerous for rescue crews to go inside, so off go the drones instead – five little unmanned aerial models that hover and flit through fiery beams and door frames without any human control. They know to spread out to cover more ground, and know how to adjust their search patterns when the communication links with the other drones go down. Their algorithms find and retrieve your cat in what rescue crews tell you is record time.

    Or that's the dream anyhow, to one day build artificially intelligent, self-organizing robot systems that can collaborate on complex tasks – or, at the very least, rescue imperiled cats. We're not there yet, but researchers have been getting closer, thanks in part to what we're learning from the collective behavior of ants.

    Photo credit: National Geographic

    Look back through artificial intelligence literature from the past few decades and you'll find ant-inspired algorithms are a popular topic of study. Of note, Swiss artificial intelligence researcher Marco Dorigo was the first to algorithmically model ant colony behavior in the early 1990, and Stanford University biologist Deborah Gordon published her own study on the expandable search networks of ants a few years after. Today, both have different but related ideas on how we might implement so-called ant-inspired swarm intelligence in robots – and perhaps soon, drones – outside of the lab.

    Consider, for example, how ants explore and search. Ants change the way they scour for things such as food and water depending on the number of ants nearby. According to Gordon, if there is a high density of ants in an area, the ants search more thoroughly in small, random circles. If there are fewer ants, the ants adjust their paths to be straighter and longer, allowing them to cover more ground.

    Photo credit: NASA

    This is all well and good in typical ant environments – but how do the ants adapt when interference is introduced, and their communication with other ants interrupted? To find out, Gordon sent over 600 small, black pavement crawlers to the International Space Station in January, and believes that studying how they react to the unfamiliar microgravity of space could help build better robots. Her research is especially prescient in the age of the drone.

    In a Stanford news release, Gordon likened the interference introduced by microgravity as "analogous to the radio disruption that robots might experience in a blazing building." Depending on how Gordon's space ants adapt, she thinks the results when applied to robotics and artificial intelligence could help us program more efficient algorithms for search and exploration – especially when our robots are faced with unfamiliar environments, and with little to no human control.

    In Brief: Why Your Best Thinking Happens in the Shower

    Wired Science has an interesting blog post about why our best thinking seems to happen when we're in the shower. According to psychologists, it's because the shower is a perfect situation for our brains to enter the "default mode network," a mental state in which the environment seems to fade and you become more aware of your internal thoughts. Kind of like an out-of-body experience. Activities like showering (or building LEGO!) engage a part of your brain to keep you just mentally active enough to be stimulated, but still allow for you to have an uninterrupted stream of thought for those eureka moments. It's also known in psychology as a state of "Flow." Earlier this week, we tested Birdly, a virtual reality apparatus that attempts to put your brain in that state of flow--by giving you the sensation of flying like a bird. We'll have video and a writeup recapping it soon!

    Norman 2
    In Brief: NASA Announces Marks 2020 Rover Payload

    Last Thursday, NASA JPL announced the loadout for the still-as-yet unnamed Mars 2020 rover. The follow up to 2012's Curiosity will carry seven scientific instruments, selected from 58 proposals made by engineers and researchers worldwide. The 2020 rover is based on Curiosity's proven chassis and landing system design, with upgraded hardware to explore its surroundings. (A landing site has not yet been determined.) Among the new gear--which will be developed by partners at academic and private institutions--is the Mastcam-Z, an advanced camera system with the ability to zoom. While filmmaker James Cameron was involved with the development of the imaging system on Curiosity (NASA eventually nixed his 3D camera system), the Mastcam-Z design will be spearheaded by Arizona State University's Jim Bell. And yes, the current plan is for it to be a stereoscopic camera system.

    Norman
    Show and Tell: The Curta Calculator

    Inventern champ Sean Charlesworth joins us in the Tested office this week to share one of his prized possessions: a Curta mechanical calculator. Designed in the 1940s before electronic calculators, this hand-cranked device was considered the the most precise pocket calculator available, and was used by rally car drivers and aviators.

    Tested Mailbag: Thanks, Elon!

    A mystery package arrives at the office, sent by a Tested reader! We could not be more stoked by what we find inside. Thanks for the awesome mailbag, Grant!

    In Brief: The Origins of the "10% Brain Power" Misconception

    Adam linked us to this good story on Gizmodo examining the origins of the common misconception that we only use 10% of our brains. Neuroscience and psychologists researchers in the early 20th century attempted to quantify how much of our brains (by mass) that we use for everyday activities, to find a correlation between brain mass and cognitive capacity. That line of thinking endures, as a means to explain latent cognitive potential. Of course, we actually use virtually all of our brain, and recent studies have shown that most of our brains are active over the course of a day, even if not all at once. Further reading on the topic here.

    Norman 1
    OverDrive: The Flying Car on Kickstarter

    Over the years, I’ve learned to expect the unexpected from my friend and former NASA colleague, Fitz Walker. I’ve long been aware of his engineering and fabrication talents from projects that I have collaborated with him. Fitz has a secretive side too. The true depth and breadth of his skills always seem to be revealed through random, casual conversations: “That thing? Oh, that’s my RC submarine…I’ve been building them for years.” “What? I didn’t tell you that I built an electric motorcycle?”

    Fitz’s most recent bomb was borderline atomic. He confided that he has spent years working with a team to create an honest-to-goodness flying car--which many consider to be the holy grail of engineering challenges! I was able to get him to divulge a few details, and later met with the project’s originator and driving force, Mitchell LaBiche. I caught Mitch just as he was preparing to launch a Kickstarter campaign for his project. He provided deep insight into his design as well as the regimented approach that he has taken to avoid the pitfalls that foiled so many other flying car entrepreneurs.

    The LaBiche Automotive OverDrive is a flying car project that looks more like an Italian supercar than airplane. Attractiveness was one of the development team’s primary design requirements.

    Tested: You call your flying car design “OverDrive”. How did the concept develop?

    LaBiche: During my early years of flying, I became stranded or delayed at a few destinations on multiple occasions. One such event was when I became stranded at an airport for three days and could not take off. However, just 50 miles away, the weather was clear. If I could have moved my plane down the road to the clear weather, it would have turned my disastrous weekend into a mere inconvenience. That event got me to start thinking of a better way to own, use, and integrate civil aviation/personal aircraft into everyday life.

    During that time, I was employed as an engineer working on the Apache helicopter program and had envisioned that what I (and others) wanted was some sort of vertical takeoff, personal air vehicle. The plan changed when I took a friend’s suggestion to ask a few people what they wanted…and possibly turn my personal project into a money making venture. I invested three years and lots of money in marketing questionnaires which produced over 3,000 data points. From that, I found that what most people actually wanted was a not a vertical takeoff machine, but a personal travel vehicle that could both fly fast and go down the road. That changed everything.

    OverDrive's proposed conversion from car to plane. (Click to play)

    The original R&D project (named the FSC-1, for Flying Sports Car #1 under the LaBiche Aerospace banner) was started to see if a marketable flying car could be designed and built. After nearly 20 years of continuous, low-level development, it was deemed ready to move on to the next phase as a real product in 2012. A new sister company was formed (LaBiche Automotive) and the FSC-1 became “OverDrive” to sell the vehicle under a new name indicative of a product for the advanced automotive market.

    How to Steal a Soviet Lunar Probe

    In the mid-60s, the Soviet Union staged an international exhibition to showcase the achievements of Communism to westerners. Included in the exhibition was a never-flown, production version of one of the USSR's Luna moon probes. This io9 article details the caper, but The National Security Archive has a declassified version of the original report as well as several other fascinating declassified documents, including details about the Navy's attempts to use the Moon for untraceable communication.

    Will 2
    In Brief: Predicting Someone's Age By Their Name

    In the new Planet of the Apes movie, Keri Russell's character briefly talks about how she had a young daughter who died of the simian flu virus. As the character was telling the story, my friend--who had not seen the film--leaned over to me and said "I bet her daughter's name was Sarah." And indeed, just a second later, that's what was uttered on screen. This prediction led to a discussion post-screening about why Sarah was such a suitable (and predictable) name to evoke the image of a child never seen in the film. Why is Sarah evocative of a young child and not a name like Bessie or Helen? Earlier this year, Nate Silver's FiveThirtyEight did a statistical analysis of the popularity of names, based on public data from Social Security Administration. We've seen websites and apps that show how popular names are over time, but Silver's team went a step further to calculate the median ages for every common and uncommon name, for both male and female names. Of all living Sarah's, for example, the median age is 26. While if you were to meet a Helen in person, it's more likely that she's older, given that the median age for Helen's still alive is 73. And the names with the youngest median age? For girls, it's Ava, and for boys, it's Liam. Jayden comes in at a close second. Thanks, Will and Jada.

    Norman
    In Brief: Elon Musk Donates $1 Million to Tesla Museum

    Webcomic artist Matthew Inman, creator of TheOatmeal, is a big fan of Nikola Tesla. That's not uncommon among us nerds, but Inman's the only one who helped raise over a million dollars to save the site of Nikola Tesla's old laboratory--known as Wardenclyffe Tower--in hopes of building a science museum there. The Shoreham, New York-based Tesla Science Center still needed $8 million to actually build the facility. Responding to a impassioned plea-by-webcomic, Tesla Motors founder Elon Musk has today pledged to donate $1 million toward that goal. Happy 158th birthday, Nikola Tesla.

    Norman
    10 Dirty Secrets Of Big Cruise Ships

    Cruises are popular options for vacationers who like to get rid of the stress and uncertainty of traveling. But all’s not well below-decks on these massive cruise ships. Today, we’ll expose ten dirty secrets of the big cruise ships.

    The Science and Mysteries of Booze

    We sit down with Adam Rogers, author of the book Proof: The Science of Booze, to discuss the what modern science and ancient history have to teach us about alcohol and humanity's complicated relationship with it. Grab a refreshing beverage and join us for a spirited conversation about society's favorite poison.

    Awesome Jobs: Meet Martin Nweeia, Narwhal Expert (and Dentist!)

    Martin Nweeia knows more about narwhals than almost anyone in the world. More specifically, he’s probably the world’s foremost expert on narwhal tusks. But Nweeia is only sort-of a marine mammal biologist. He’s actually a practicing dentist and a clinical instructor at the Harvard School of Dental Medicine. This guy knows from teeth. So, while it might seem weird that he studies narwhals, if you think about it, there’s some sense to his in-depth knowledge of these whales’ toothy protuberances. We chatted with Nweeia about why the narwhal tusk is one of the weirdest teeth in the world and what it’s like to wade into the arctic waters of Canada’s Northwest Territories with Inuit guides to get a closer look at the real-life unicorn of the sea.

    What exactly is a narwhal?

    It’s an arctic whale with an extraordinary tooth.

    So, maybe it’s not so strange that you’re a dentist studying a whale...

    For everybody else it’s unusual. For me it’s OK. At the heart of things I’m a curious kid. As I went through my dental education I was equally fascinated by people. I had a very strong interest in anthropology that went parallel with my interest in science. These two fields would intersect. For a long time I was interested in dental anthropology, but I happened on the narwhal because I used to give talks and give examples of how teeth would express themselves in nature.

    The narwhal seemed like a good example of an unusual tooth. But it didn’t make sense to me. And the more I read about it the less sense it made.

    Why doesn’t it make sense?

    This is a whale that eats pretty big fish and when you look inside its mouth it has no teeth. If i’m eating large fish, that might require chewing and biting, why give up all those teeth and put all of the energy into growing one giant tusk?

    But there are also lots of the little things that don’t make sense. When you think of teeth, on both sides of a mammal's bite you’d expect them to be the same size and have a mirror image morphology or shape. In narwhals it couldn’t be more opposite. It doesn’t even fall within any parameter of any creature ever known on the planet.

    If you look at the narwhal’s, its tusk comes out of the left side. When you see photos of them, they angle their body so the tusk appears straight in alignment with the horizontal axis. But if you look at them still, clearly the tusk is coming from the left side. The tooth on the right side often stays embedded in the skull.

    You’ve got a tooth on one side that’s between a foot and a foot and a half and on the other side it’s 9 feet. Even in the rare instance when the narwhal has two tusks, the right is usually less in length from the left. The erupted tusk is on the left side or on both sides, or none. Never on the right by itself.

    10 Strange Features Of Sea Creatures

    For all of our scientific advances, the ocean is still a place of incredible mystery. The overwhelming biodiversity of underwater life has spawned a panoply of organisms that can do things no other living thing can. Today, we’ll spotlight ten ocean animals that have completely unique features.

    A Glimpse Inside the World's Deepest Caves

    I absolutely loved this New Yorker piece by Burkhard Bilger about Bill Stone's expedition to the Chevé cave system near Oaxaca Mexico. Chevé is one of the deepest cave systems in the world, and explorers are constantly pushing the boundaries to find the ends of the system. At this level, spelunking requires high proficiency in dozens of skills, including climbing and scuba diving. It's long, but definitely worth a Saturday morning read.

    Solutions To the Fermi Paradox

    The Fermi Paradox is endlessly fascinating to me. The paradox is simple--there are somewhere between 100 billion and 400 billion stars in our galaxy, cosmologically speaking our Sun is relatively young, and our species is brand new. If life is abundant in the universe, why haven't we heard from anyone else yet?

    This article does a good job breaking down the possible reasons we haven't made contact yet. The explanations range from the macabre to the comical. Personally, I'm optimistic that the first species that developed interstellar travel hasn't been wiping out any other species that can potentially compete with them. I also would hope that we don't just live "far out in the uncharted backwaters of the unfashionable end of the Western Spiral Arm of the galaxy." Getting any resolution to the Fermi Paradox would frankly be terrifying, but it's a good excuse to spend a few minutes this weekend laying with your back on the ground and contemplating the infinite.

    The Case for Leaving Shipwrecks at the Bottom of the Ocean

    For over 500 year historians have wondered: where in the world is Christopher Columbus' lost ship? The Santa Maria was the largest of three ships to sail across the Atlantic on Columbus' first voyage, but the only one to sink.

    In May, a well-known undersea explorer by the name of Barry Clifford announced he may have found the missing ship off the coast of Haiti. It's there that records say the Santa Maria hit reef and met its watery end. But if that turns out to be the case, don't expect to see the Santa Maria's salvaged remains on display in a museum anytime soon. Removing a wreck from the ocean floor – particularly a very old wreck such as this – is often the last thing that archaeologists and historians want to do.

    An artist's interpretation of the grounding of the Santa Maria.

    In 2001, the United Nations Educational, Scientific and Cultural Organization (UNESCO) published a document with the aim of strengthening the protection of so-called underwater cultural heritage sites – environments that have traces of human existence with cultural, historical or archaeological character, and have remained in water for at least 100 years.

    As far as wrecks are concerned, "The preservation in situ of underwater cultural heritage shall be considered as the first option before allowing or engaging in any activities directed at this heritage," the document states. The short version is that leaving the ship and its artifacts where they were found – in situ – might actually do more to preserve and conserve the site than raising them from the water. But there are and have been exceptions.

    "The principle is that, yes, you can still recover things if they're threatened," says Marc-André Bernier, chief underwater archaeologist for the government agency Parks Canada. "If there is a research question that you can only answer by excavation then it's justified. But the principle is that if it's somewhere, it has a sense in that place, so if you can, you should try to leave it there."

    In other words, context is important. And once you excavate a shipwreck, you lose details about its history and fate. "The site or the shipwreck has a story to tell. And when you excavate it's like reading a book, which is the story of a ship. But the pages disappear as you read them," Bernier says. "And if you don't take notes and record everything, you're only relying on your memory."

    But leaving a shipwreck in situ can sometimes be just as damaging as recovering the remains.

    Put a Camera On It: How Scientists Use New Tech to Study Sharks

    Researchers are totally obsessed with understanding sharks right now. One of the major reasons why is that the world’s most successful hunters have been elusive and difficult to study. They’re constantly on the move -- some species migrate thousands of miles every year. But thanks to all sorts of new technologies, and some innovative scientists finding unconventional ways to use that tech, shark behavior is finally starting to come into the light. Here’s a look at some of the more innovative ways scientists are using tech to study sharks.

    Image credit: Carl Meyer

    Underwater Cameras

    Scientists may have captured and tagged some sharks, and observed their behavior from the surface of the sea, but very little is known about how they behave when no one’s looking. The least studied part of shark behavior, for example, is how they interact with each other or other species of shark. So Carl Meyer and his team at The University of Hawaii worked with Japanese company Little Leonardo to build cameras small enough to fit on a shark’s fin without hindering their movement.

    What they found once the cameras were in the ocean shocked them. Local reef sharks -- just a few miles off the coast of their own research base -- were mingling with all sorts of different shark species, including Hammerheads. The team was able to see feeding behavior and even some frisky swimming as sharks chased around members of the opposite sex.

    Above: Camera-equipped male sandbar shark swims in close proximity to the reef, startling reef fishes, before heading across open sand to find and pursue a female sandbar shark. Credit: University of Hawaii (Carl Meyer)/University of Tokyo (Katsufumi Sato)

    Meyer calls the cameras “data flight recorders for sharks” and says that thanks to the research they now have the first true sharks-eye-view of the ocean. Going forward they’re hoping to gain a better understanding of sharks eating habits by seeing the hunt from the sharks’ perspective.